

Pulp and paper mill fiber sludges in agricultural water protection

Kimmo Rasa

Research manager, senior scientist, PhD Production systems / Biorefinery and bioproducts

Luke's working group: Risto Uusitalo, Taina Pennanen, Sannakajsa Velmala, Krista Peltoniemi, Hannu Fritze, Jaakko Heikkinen, Helena Soinne, Riikka Keskinen, Helena Merkkiniemi, Johanna Nikama, Tuija Hytönen, Juha-Matti Pitkänen...

125 ме

Turnover

73 M€ Budget funding

52 M€ External funding

25

Locations in Finland

HQ in Helsinki

Present in 12 campuses with universities, research institutes and polytechnics

1288

Employees

46 research professors 622 researchers

We are one of the four Statistical Authorities in Finland. 9.3.2021

4-year data published

Journal of Environmental Quality

TECHNICAL REPORT De Full Access

Pulp and Paper Mill Sludges Decrease Soil Erodibility

Kimmo Rasa 🔀, Taina Pennanen, Krista Peltoniemi, Sannakajsa Velmala, Hannu Fritze, Janne Kaseva, Juuso Joona, Risto Uusitalo

Seil

First published: 21 October 2020 | https://doi.org/10.1002/jeq2.20170

Financial support:

- Finnish Funding Agency for Technology and Innovation (Tekes/Business Finland) and the companies involved in the NSPPulp project: UPM-Kymmene Oyj, Metsä Fibre Oy, Stora Enso Oyj, Biolan Oy, Ekokem Oy, Outotec Finland Oy, Tyynelän maanparannus Oy
- Ravinnekuitu-project (2018-2019), financed by the Nutrient Recycling Pilot Programme (Finnish government key project)
- European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme, grant agreement 818290 (CIRCLES).

4 9.3.2021 © NATURAL RESOURCES INSTITUTE FINLAND

Field experiment at Jokioinen

- Established at autumn 2015
 - Composted pulp mill sludge (CPMS)
 - Lime-stabilized pulp mill sludge (LPMS)
 - Fiber sludge (FS)
 - From pre-clarifier of cardboard machine process water
 - Unamended plots served as the control

5

021 © NATURAL RESOURCES INSTITUTE FINLAND

Soil amendments

- Fiber sludge nutrient poor
- CPMS&LPMS: phosphorus, nitrogen and cadmium content must be considered when applied
- Current practice ~40 t ha⁻¹

Sludge	Moist t ha ⁻¹	Carbon t ha ⁻¹	P-tot kg ha ⁻¹	N-sol kg ha⁻¹	N-tot kg ha ⁻¹	Cd g ha ⁻¹
CPMS	52	8	45	211	34	21
LPMS	51	9	53	30	32	16
FS	72	8	2	1	1	0.2

Luke © NATURAL RESOURCES INSTITUTE FINLAND

Rainfall simulation test

20 samples in each spring

LUKC 3.002ATURAL CESDARCERALNESOURCERSAINSTI

- Soil susceptibility to erosion and nutrient mobilization
- 30x40 cm soil monoliths taken to laboratory
- Simulated rain applied for 5 h d⁻¹ on two consecutive days at an intensity of 5 mm h⁻¹ (=25 mm d⁻¹)
- Percolation water samples were collected and analyzed
- Procedure repeated each spring 2016-2019 (+2020)

Suspended solid (SS) and total phosphorus (TP)

- All products reduced SS and TP over 4-year period
- Reduction of SS in 1st year >60% and in 4th year >30 %
- Similar trend in TP
- Dissolved reactive P not affected by treatments
- Springs 2018 and 2019 were very dry, SS concentration in CTRL was halved
 - Gradually subsiding effect of amendments or drying induced improvement of CTRL soil structure?

Luke © NATURAL RESOURCES INSTITUTE FINLAND

9.3.2021 8

Dissolved organic carbon (DOC) and Total nitrogen (Tot-N)

- DOC concentrations stabilized after the first spring
 - 14-17 t organic matter ha⁻¹ was added
- Low Tot-N concentrations coincident with low yield of FS treatment in 1st year
 - Microbial immobilization

LUKE © NATURAL RESOURCES INSTITUTE FINLAND

Electrical conductivity (EC) and pH

- Increase in percolation water pH in line with soil pH
- EC mostly below 300 µS cm⁻¹
 - In the case of <u>gypsum</u>, water EC
 >300 µS cm⁻¹ promoted aggregate stability and flocculation of clay particles
- Mechanism behind stabilized soil structure?
 - interactions of soil minerals with the added organic matter and microbe-derived compounds

Luke © NATURAL RESOURCES INSTITUTE FINLAND

9.3.2021 10

Soil carbon (C%) and cadmium (Cd) content, electrical conductivity (EC) and pH

- No clear increase in soil carbon content after 4 years
 - New sampling 2020, advanced study methods used!
 - Results leans towards fast microbiological decomposition
- Liming effect, pH increased 0.2-0.6 pH Unit
- Slight increase in soil electrical conductivity
- No effect on soil Cd content

Treatm.	C %	р	EC mS cm ⁻¹	р	рН	р	Cd mg kg ⁻¹	р
FS	2.34	0.767	0.87	<.0001	6.81	<.0001	0.16	0.984
LPMS	2.40	0.388	0.83	<.0001	6.69	<.0001	0.16	0.611
CPMS	2.50	0.053	0.71	0.001	6.40	0.005	0.17	0.558
CTRL	2.32		0.61		6.25		0.16	

Soil microbes 3 year after amendment

- The amendments increased basal respiration in spring and microbial biomass in autumn
- The amendments clearly changed the fungal and bacterial community composition
- *Sebacinales* ~300-700% increase
 - Indicator for less intensive land use typical in organic farming
- *Funneliformis mossae* ~200% increase
 - Arbuscular mycorrhiza fungi, nutrient uptake
- Tetracladium marchalianum ~230% increase
 - Fungi, efficient aggregator
- **Positive association** but no direct evidence that microbiological activity explains improved soil stability!

Ongoing projects

- KUITU-Project studies CPMS as water protection measure in catchment-scale
 TEHOSTAMIS
 - <u>https://www.luke.fi/kuitu/</u>
 - On-line water quality measurement installed 2019, fiber application at autumn 2021
- Biosfääri-project, fibers in coarse textured soil (2020→)
- Viivi-project, fiber sludge in vegetable production (2021 \rightarrow)
- Maa- ja vesitekniikan tuki ry (2021 \rightarrow)
 - Helium ion microscopy and X-ray microtomography
 - Organo-mineral associations, aggregate 3D structure
- EU-H2020-project CIRCLES
 - Soil microbial communities and activities using new metagenome and metatranscriptome analyses

OHJELMA

Thank you!

